
STAT 232 Categorical Data Analysis Homogeneous Association

Breslow-Day Test for Homogeneity of the Odds Ratio

To test the hypothesis that the OR between X and Y is the same at each level of Z.

H0 : θXY (1) = θXY (2) = · · · = θXY (k)

We calculate the Breslow-Day test statistic as follows:

χ2 =
∑
i

∑
j

∑
k

(nijk − µ̂ijk)
2

µ̂ijk

• The µ̂ijk are calculated assuming the null is true, that there is a common odds ratio across the level of the third variable.

• The test statistic has an approximate chi-square distribution with df = k − 1.

• Rejection Region: χ2 > χ2
α,k−1

• p-value: Pr(χ2 > χ2
obs)

• Similar to our previous analysis of 2× 2 tables:

(1) nijk = observed frequency in row i, column j, of table k

(2) µ̂ijk = expected frequency in row i, column j, of table k

In particular,

µ̂ijk =
ni+k n+jk

nk
.

• We need at least 80% of the expected cell counts to be > 5 for the chi-square approximation to be valid.

• If we fail to reject H0 using the Breslow-Day statistic, then we can assume homogeneous association holds, and we can
form a common value for the odds ratio.

The Mantel-Haenszel estimate of the common odds ratio, θ

Let each partial table (indexed by k) have the form:

Y = 1 Y = 0
X = 1 ak bk
X = 0 ck dk

Then

θ̂MH =

K∑
k=1

akdk
nk

K∑
k=1

bkck
nk

, nk = ak + bk + ck + dk

• Add the numerators and denominators of the individual odds ratios separately, then divide

• The conditional independence is stronger than homogeneous association. Not only are all of the OR equal, but they all
equal 1!!

Cochran-Mantel-Haenszel Test for Conditional Independence

To test the hypothesis that X and Y are conditionally independent given a third variable Z:

H0 : θXY (1) = θXY (2) = · · · = θXY (k) = 1

Ha : At least one ̸= 1

1



Form the chi-square statistic:

χ2
CMH =

K∑
k=1

(
n∗
ijk − ni+k n+jk

nk

)2

K∑
k=1

n1+k n+1k n2+k n+2k

n2
k(nk − 1)

• Which follows an approximate chi-square distribution with v = 1 df.

• Note: If all θXY (k) = 1, then the CMH statistic is close to zero. However if some or all θXY (k) > 1 (or < 1, but not
both), then the CMH statistic is large.

Let’s revisit the Berkley Admissions Data problem

Let G = Gender, A = Admissions Status

H0 : θGA(A) = θGA(B) = · · · = θGA(F ) = 1

Ha : At least one ̸= 1

Mantel-Haenszel X-squared = 1.4269, df = 1, p-value = 0.2323

alternative hypothesis: true common odds ratio is not equal to 1

95 percent confidence interval:

0.7719074 1.0603298

sample estimates:

common odds ratio

0.9046968

• Fail to reject the null, so we can assume conditional independence!

• Which means that there was not bias in the admissions process against women, once the departments they applied to
were taken into account

• Conditional independence also implies homogeneous association!

• If you compute the Mantel-Haenszel estimate of the common odds ratio using data given in Activity 2, then

θ̂MH = 1.105

Models for Matched Pairs – McNemar Test Comparing Marginal Proportions

What is McNemar Test? The chi-squared test for a comparison of two dependent proportions is called the McNemar
test.

Every method that we have looked at so far has assumed that subjects in the different treatment groups are independent.
Here, we consider two samples that have a natural pairing between each subject in one sample and a subject in the other
sample.

• In this case, we say that the samples are matched pairs and are statistically dependent.

The most common way for this to happen is if the two samples contain the same subjects.

• Longitudinal studies: same subjects are observed over time

• Surveys that observe two or more similar response variables (Y1 and Y2)



For example, you could ask a random sample of people two Yes/No questions and record the number of people who answer
Yes/No to each question in a 2× 2 table.

• Link to class survey, two yes/no questions

• If the two questions are similar, we would expect a strong association in the answers since it’s the same people answering
both questions

Example: Chemotherapy Treatments for Breast Cancer

Suppose that we are looking to compare two different chemotherapy treatments for breast cancer and plan to set up the
experiment so that the two treatment groups are as comparable as possible on other prognostic indicators.

• In Treatment A, a patient gets chemo perioperatively (i.e. around the time of the surgery - within 1 week of the
mastectomy) and for an additional 6 months afterwards.

• In Treatment B, chemo is only given perioperatively

The easiest way to do set up this is to match two people based on the prognostic indicators (such as age and clinical
condition) and then randomly assign one to the treatment group and the other to the control group.

The response variable is survival status at the end of 5 years.

Treatment Survive 5 years Die within 5 years Total
A 526 95 621
B 515 106 621

Total 1041 201 1242

For Treatment A: P(Survival) = 526
621 = 0.847

For Treatment B: P(Survival) = 515
621 = 0.829 Only a small difference!

A chi-squared test of independence gives:

χ2 = 0.59 with v = 1 df p-value=0.441 Not significant!

However, this test is valid only for two samples which are independent! So we need to come up with an alternate approach.

In matched pairs, “individual people” are not the unit of analysis like in all of the other studies up to this point. Instead,
it’s the “matched pair” that is the unit of analysis. So let’s look at our data in terms of the paired data:

Treatment B Outcome
Treatment A Outcome Survive 5 years Die within 5 years Total

Survive 5 years 510 16 526
Die Within 5 Years 5 90 95

Total 515 106 621

• 90 pairs where both patients die within 5 years

• 510 pairs in which both patients survive 5 years

• 16 pairs where Treatment A survived, but Treatment B died

• 5 pairs where Treatment B survived, but Treatment A died

It’s easy to see the dependence between the two samples:

P(B survives |A survives) =
510

526
= 0.970

P(B survives |A dies) =
5

95
= 0.053

If the samples were independent, then these probabilities should be the same. The dependence makes it clear that a
chi-square test is not valid here.



Notice that there are:

600 = 90 + 510 pairs where the outcomes agree

21 = 16 + 5 pairs where the outcomes disagree.

Definition: A concordant pair is a matched pair in which the outcome is the same for both members of the pair.

Definition: A discordant pair is a matched pair in which the outcome is different for the members of the pair.

• 600 concordant pairs and 21 discordant pairs.

The number of concordant pairs doesn’t tell us anything about the difference between the treatment groups, so let’s
instead focus on the discordant pairs.

Types of Discordant Pairs:

• Type A: Treatment A has the event, but Treatment B does not.

• Type B: Treatment B has the event, but Treatment A does not.

So for example, if our event is “survive 5 years”, there are nA = 16 Type A and nB = 5 Type B discordant events.

Definition: If P (X = 1) = P (Y = 1), then there is said to be marginal homogeneity.

In other words, the two treatments are equally effective

Let’s compute P (X = 1)− P (Y = 1).

P (X = 1)− P (Y = 1) = (p11 + p12)− (p11 + p21) = p12 − p21.

Marginal homogeneity is equivalent to there being an equal proportion of Type A and Type B discordant pairs. That is,
p12 = p21. In other words, equality of the off-diagonal elements of the table.

Let nD = nA + nB = total number of discordant pairs and define the p-value to be pA = P (discordant pair is TypeA).

When the null is true, we expect similar values for nA and nB , so pA = 1/2.

• Under the null, each of the nD observations has an equal chance of belonging to nA and nB .

• The number of observations in each cell follows a binomial distribution with p = 1/2!

Note: If Treatment A is more effective than Treatment B (more Type A than Type B), then p > 1/2. If Treatment B
is more effective, then p < 1/2.

Here is the summary in terms of a table:

Y
X Y = 1 Y = 2

X = 1 # of Concordant Paris of Type A # of Discordant Pairs of Type A (nA)
X = 2 # of Discordant Pairs of Type B (nB) # of Concordant Pairs of Type B

McNemar Test for Correlated Proportions – Large Sample

For matched-pairs data with a binary response, a test of marginal homogeneity has null hypothesis that the treatments
are equally effective:

H0 : P (X = 1) = P (Y = 1), or equivalently H0 : pA = 1/2

Against the two-sided alternative:

Ha : pA ̸= 1/2

Then, when nD is large, the binomial distribution can be approximated by a normal distribution with mean nD

2 and

variance nD

(1
2

)(1
2

)
=

nD

4
.



Therefore, our test statistic equals:

Z =
nA − nD

2√
nD

4

=
nA − nB√
nA + nB

Adding in a correction for continuity and squaring Z so that it becomes chi-square with 1 df:

χ2 =

(∣∣∣nA − nD

2

∣∣∣− 1
2

)2

nD

4

Rejection Region: χ2 > χ2
α,1

p-value: P(χ2 > χ2
obs).

Note: The normal approximation holds as long as nD > 20, since then we have 10 expected “success” and 10 expected
“failure”.

A large sample 100(1− α)% confident interval for the true difference of proportions is

(p̂1+ − p̂+1)± Zα/2 (SE),

Where SE =
1

n

√
nA + nB − (nA − nB)2

n
. Note that p̂1+ − p̂+1 =

n12 − n21

n
.

Exact Version of McNemar Test

If nD < 20, we can’t use the normal approximation to the binomial and instead should use the exact binomial formula.
As before:

H0 : P (X = 1) = P (Y = 1), or equivalently H0 : pA = 1/2

Against the two-sided alternative:

Ha : pA ̸= 1/2

Calculate the exact p-value as follows:

(1) 2

nA∑
k=0

(
nD

k

)(1
2

)nD

when nA < nD/2.

(2) 2

nD∑
k=nA

(
nD

k

)(1
2

)nD

when nA > nD/2.

(3) p = 1 if nA = nD/2

Note: We multiply the sums in (1) and (2) by 2 because the test is two-sided.


